Multipar-T: Multiparty-Transformer for Capturing Contingent Behaviors in Group Conversations

Dong Won Lee, Yubin Kim, Rosalind Picard, Cynthia Breazeal, Hae Won Park

Massachusetts Institute of Technology

{dongwonl, ybkim95, picard, cynthiab, haewon}@mit.edu,

https://github.com/dondongwon/Multipar-T

2023. 6. 8 • ChongQing

--- IJCAI 2023

Reported by JiaWei Cheng

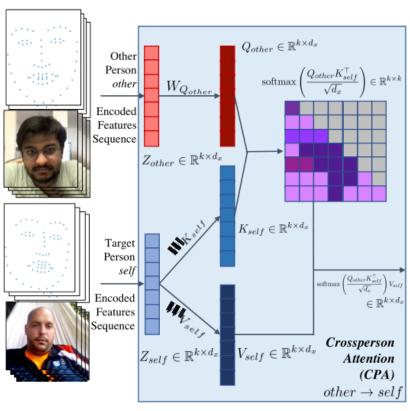
Motivation

Firstly, the system must perform well in recognizing individual behavioral cues

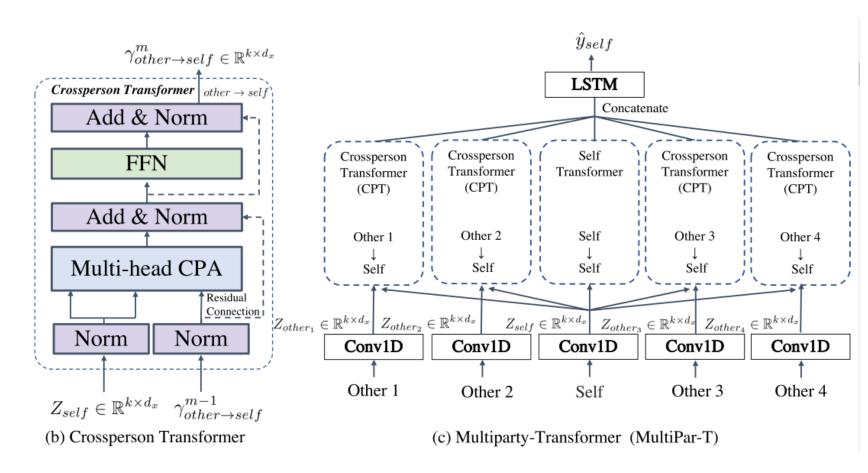
Secondly, it must do so simultaneously, while keeping track of every individual in the group

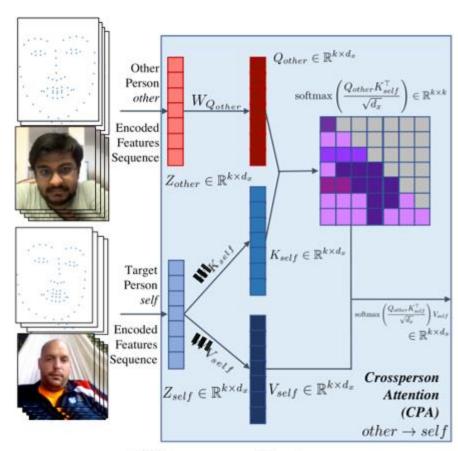
Finally, it must also recognize the subtle interactions that take place between group members as it can provide more insights into what is being communicated.

Overview



(a) Crossperson Attention





(a) Crossperson Attention

Method

$$CPA_{other \to self} (Z_{other}, Z_{self}) = softmax \left(\frac{Q_{other} K_{self}^{\top}}{\sqrt{d_x}} \right) V_{self}$$

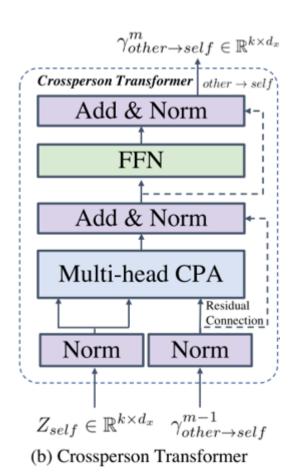
$$= softmax \left(\frac{Z_{other} W_{Q_{other}} \left(Z_{self} W_{K_{self}} \right)^{\top}}{\sqrt{d_x}} \right) Z_{self} W_{V_{self}}.$$
(1)

$$CPA_{other \to self}^{multi} (Z_{other}, Z_{self})$$

$$= Concat \left(CPA_{other \to self}^{1}, \dots CPA_{other \to self}^{h} \right) W^{\text{multi}}$$
(2)

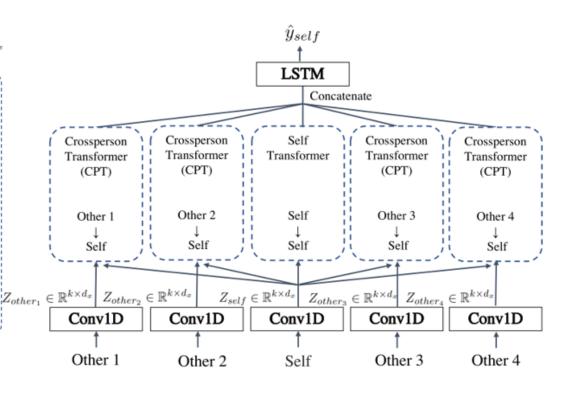
$$Z_p = \text{Conv1D}(X_p) + \text{PE}(X_p) \tag{3}$$

Method



$$\gamma_{other \to self}^{m} = \text{CPT}_{other \to self}^{m}(\gamma_{other \to self}^{m-1}, Z_{self})
\hat{\gamma}_{other \to self}^{m} = \text{CPA}_{other \to self}^{m, multi}(\text{Norm}(\gamma_{other \to self}^{m-1}), \text{Norm}(Z_{self}))
+ \text{Norm}(\gamma_{other \to self}^{m-1}))
\gamma_{other \to self}^{m} = \text{Norm}(\text{FFN}(\hat{\gamma}_{other \to self}^{m}) + \hat{\gamma}_{other \to self}^{m})$$
(4)

Method



(c) Multiparty-Transformer (MultiPar-T)

$$\zeta_{self}^{n}, hidden^{n} = LSTM([\gamma_{1 \to self}^{M}|| \dots ||\gamma_{P \to self}^{M}], hidden^{n-1})$$

$$\hat{Y}_{self} = FFN(\zeta_{self}^{k}) \qquad for \ n \in [k]$$

$$(5)$$

$$L_{Focal} = -\frac{1}{N} \sum_{i}^{N} \sum_{c}^{C} (1 - \hat{Y}_{ic})^{\alpha} y_{ic} \log \left(\hat{Y}_{ic}\right)$$
 (6)

	All Engageme	nt Classes		High Dis-Eng.	Low Dis-Eng.	Low Eng.	High Eng.
Model	Accuracy	Weighted F1	Macro F1	F1	F1	F1	F1
ConvLSTM [Del Duchetto et al., 2020]	0.859 ± 0.01	0.857 ± 0.02	0.699 ± 0.05	0.741	0.459 ± 0.22	0.699 ± 0.12	0.907 ± 0.01
OCtCNN-LSTM [Steinert et al., 2020]	0.769 ± 0.08	0.695 ± 0.14	0.410 ± 0.10	0.588	0.119 ± 0.17	0.233 ± 0.33	0.864 ± 0.05
TEMMA [Chen et al., 2020a]	0.823 ± 0.02	0.822 ± 0.02	0.561 ± 0.11	0.286	0.254 ± 0.19	0.621 ± 0.13	0.885 ± 0.01
EnsModel [Thong Huynh et al., 2019]	0.760 ± 0.07	0.675 ± 0.12	0.302 ± 0.03	0	0.000 ± 0.00	0.160 ± 0.23	0.860 ± 0.05
BOOT [Wang <i>et al.</i> , 2019]	0.817 ± 0.03	0.822 ± 0.03	0.636 ± 0.09	0.714	0.320 ± 0.24	0.658 ± 0.12	0.873 ± 0.02
HTMIL [Ma et al., 2021]	0.820 ± 0.02	0.818 ± 0.02	0.460 ± 0.05	0	0.000 ± 0.00	0.633 ± 0.12	0.880 ± 0.02
GAT [Zhang et al., 2022]	0.739 ± 0.06	0.631 ± 0.08	0.261 ± 0.03	0	0.000 ± 0.00	0.006 ± 0.01	0.848 ± 0.04
MulT [Tsai et al., 2019]	0.847 ± 0.02	0.845 ± 0.02	0.624 ± 0.12	0.625	0.310 ± 0.25	0.665 ± 0.12	0.901 ± 0.01
Multipar-T (Ours)	$\mid \textbf{0.888} \pm \textbf{0.03}$	$\textbf{0.887} \pm \textbf{0.03}$	$\textbf{0.751} \pm \textbf{0.05}$	0.800	0.559 ± 0.07	$ $ 0.759 \pm 0.11	0.927 ± 0.02

Table 1: Results and standard deviations for engagement recognition models for 3 seeds (std dev for High Dis-Eng. not reported due to 2 seeds not having corresponding labels). Despite high accuracy and weighted-F1 scores, many previous baselines fail at infrequent disengagement classes. Multipar-T outperforms other approaches across all metrics.

Attention Direction	Ablation	All Classes			High Dis-Eng.	Low Dis-Eng.	Low Eng.	High Eng.
		Accuracy	Weighted F1	Macro F1	Binary F1	Binary F1	Binary F1	Binary F1
	Multipar-T w/o Crossperson Transformer	0.847 + 0.0154	0.844 + 0.14	0.661 + 0.018	0.588	0.433 + 0.1	0.66 + 0.12	0.901 + 0.01
$CPA_{self \rightarrow other}$		$ \begin{vmatrix} 0.847 + 0.0167 \\ 0.865 + 0.03 \end{vmatrix}$	0.845 + 0.021 0.862 + 0.036	0.624 + 0.12 0.735 + 0.02	0.625 0.769	0.31 + 0.25 0.587 + 0.12	0.665 + 0.12 0.698 + 0.15	0.901 + 0.01 $0.912 + 0.02$
$CPA_{other \rightarrow self}$	Multipar-T w/o Self Transformer Multipar-T	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.884 + 0.024 0.885 + 0.02	0.75 + 0.04 0.75 + 0.06	0.769 0.714	0.555 + 0.11 0.557 + 0.19	0.762 + 0.08 0.766 + 0.08	0.923 + 0.02 $0.923 + 0.02$

Table 2: Ablation results for Self Tranformer and Crossperson Transformer mechanisms. Attending to other's and own self behaviors boosts performance. We refer the readers to Figure 1. Multipar-T w/o Crossperson Transformer refers to the ablation of all pairwise Crossperson Transformers with only the Self Transformer remaining. Multipar-T w/o Self Transformer refers the ablation of the Self Transformer and utilizing the pairwise Crossperson Transformers. Results with different directions of Crossperson Attention are displayed, where $CPA_{other \to self}$ performs well generally and $CPA_{self \to other}$ performs well for disengaged instances.

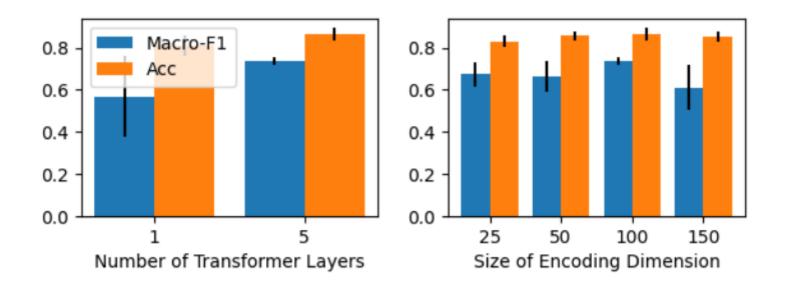
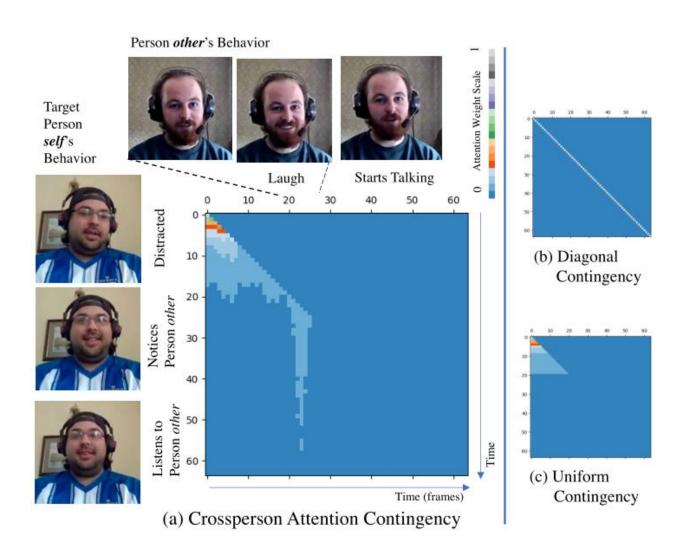


Figure 3: Macro-F1 and Accuracy scores for important hyperparameters for Multipar-T. (Left) Multi-layered transformers and (Right) encoding dimension of $d_x = 100$ boosts performance.

Model	Accuracy	Weighted F1	Macro F1
I3D [Wang et al., 2018]	0.751 ± 0.07	0.658 ± 0.08	0.254 ± 0.05
TimeSformer [Bertasius et al., 2021]	0.806 ± 0.03	0.752 ± 0.05	0.337 ± 0.14
SlowFast [Feichtenhofer et al., 2019]	0.718 ± 0.11	0.628 ± 0.12	0.232 ± 0.02
Multipar-T (Ours)	0.828 ± 0.02	$\textbf{0.823} \pm \textbf{0.02}$	0.466 ± 0.06

Table 3: Raw video-based action recognition models and Multipar-T trained with less computationally heavy training set-up. Results and standard deviation are reported for 3 seeds. We see the limitations of training end-to-end raw video-based models.



Thanks!